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Abstract

Hysteresis in smart actuators presents a challenge in control of these actuators. A fundamental

idea to cope with hysteresis is inverse compensation. But due to the open loop nature of inverse

compensation, its performance is susceptible to model uncertainties and to errors introduced by

inverse schemes. In this paper we develop a robust control framework for smart actuators by

combining inverse control with the l1 robust control theory. We show that, for both the rate-

independent hysteresis model and the rate-dependent one, the inversion error can be bounded in

magnitude and the bound is quantifiable in terms of parameter uncertainties and the inversion

scheme. Hence we can model the inversion error as an exogenous disturbance and attenuate its

impact by robust control techniques. Through the example of controlling a magnetostrictive actua-

tor, we present a systematic controller design method which guarantees robust stability and robust

trajectory tracking while taking actuator saturation into account. Simulation and experimental

results are provided.

Keywords: Hysteresis; Smart Actuators; Robust control; Inverse compensation; Actuator satu-

ration
∗Corresponding author.
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1 Introduction

Smart materials, such as magnetostrictives, piezoelectrics, shape memory alloys (SMAs), and magne-

torheological (MR) fluids, all display coupling phenomena between applied electromagnetic/thermal

fields and their mechanical/rheological properties. Smart actuators and sensors made of these mate-

rials have been receiving tremendous interest due to their broad applications in areas of aerospace,

manufacturing, defense, and civil infrastructure systems, to name a few. The hysteretic behavior

widely existing in smart materials, however, makes the effective use of these actuators and sensors

quite challenging.

Models for smart actuators that capture both hysteresis and dynamic behaviors have a cascaded

structure as shown in Figure 1(a) [1], where W is a hysteretic operator (with possibly some other

nonlinearities) and Ĝa(λ) is a linear system. In this paper we consider the discrete-time setting in the

interest of digital control, and Ĝ(λ) denotes the λ-transform of a linear time-invariant (LTI) system

G. We recall that the λ-transform Ĝ(λ) is just the usual z-transform of G with λ = z−1 [2].

umin
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~ −1

Ĝ (   )λ0
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Figure 1: (a) The model structure for smart actuators; (b) The closed-loop system incorporating

inverse compensation.

In Figure 1(b), Ĝ0(λ) denotes the plant to be controlled by the actuator. A basic approach to cope

with the hysteresis is to construct an (approximate) right inverse operator W̃−1 for W , then ũ ≈ u

and the controller design problem is reduced to designing a linear controller K̂(λ) for the composite

linear system Ĝ0(λ) ◦ Ĝa(λ). The idea of inverse compensation can be found in, e.g., [3, 4, 5, 6, 7].

The most popular hysteresis model used in control of smart actuators has been the Preisach

operator [3, 8, 9, 7]. The Preisach operator provides a means of developing phenomenological models

that are capable of producing behaviors similar to those of physical systems. For a detailed treatment

of the Preisach operator, we refer to [10, 11, 12]. In Part I of this two-part paper [13], we studied
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modeling and inverse control of smart actuators based on a magnetostrictive actuator. In particular,

we modeled the rate1-independent hysteresis with essentially a Preisach operator alone, and the rate-

dependent hysteresis with a Preisach operator coupled to an ordinary differential equation (ODE).

We also presented identification methods and efficient real-time inversion schemes for these models in

[13].

Due to the open loop nature of inverse compensation, its performance is susceptible to model

uncertainties and to errors introduced by inversion schemes. To combat this problem, adaptive in-

verse control schemes have been proposed for a class of hysteresis nonlinearities with parameterizable

inverses [4, 14, 15]. For the Preisach operator-based hysteresis models, however, their inverses are not

parameterizable in general. In this paper we develop a robust control framework for smart actuators by

combining inverse control with the l1 control techniques. We show that, for both the rate-independent

hysteresis model and the rate-dependent one, the inversion error can be bounded in magnitude and

the bound is quantifiable in terms of parameter uncertainties and the inversion scheme. Hence we

can model the inversion error as an exogenous disturbance and attenuate its impact by robust control

techniques.

The design requirements for the controller K̂(λ) can be roughly stated as: in the presence of the

inversion error and the uncertainties in Ĝa and Ĝ0, for all desired trajectories in a certain class,

1. The closed-loop system is stable;

2. The tracking error is minimized;

3. The output of K̂ does not exceed the saturation limits.

We take the saturation constraint (a common nonlinearity in actuators) into account in the design of

K̂ to ensure that the overall system operates in the linear region and thus predictions based on the

linear design are credible. The controller design method will be illustrated through the example of

robust trajectory tracking of a magnetostrictive actuator.

As remarked in [13], choosing control of the magnetostrictive actuator as an example allows us to

cover both the rate-independent hysteresis case and the rate-dependent hysteresis case. The approach

presented here applies directly to control of a wide class of smart actuators.
1Throughout the paper, the word “rate” is referred to how fast the input is being varied. For a periodic input, the

rate is directly related to its frequency.
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The remainder of the paper is organized as follows. In Section 2 we introduce the Preisach operator

and review an identification scheme for the Preisach operator. In Section 3 we describe the model

for a magnetostrictive actuator. We discuss quantification of bounds on inversion errors in Section 4.

We then formulate and solve the robust control problem in Section 5. Simulation and experimental

results are provided in Section 6. Finally we conclude in Section 7.

A preliminary version of some results in this paper was submitted for presentation at 2003 American

Control Conference [16].

2 The Preisach Operator

For a pair of thresholds (β, α) with β ≤ α, consider a simple hysteretic element γ̂β,α[·, ·], as illustrated

in Figure 2. For u ∈ C([0, T ]) and an initial configuration ζ ∈ {−1, 1}, the function

v = γ̂β,α[u, ζ] : [0, T ] → {−1, 1}

is defined as follows [11]:

v(0)
�
=




−1 if u(0) ≤ β

ζ if β < u(0) < α

1 if u(0) ≥ α

,

and for t ∈ (0, T ], setting Xt
�
= {τ ∈ (0, t] : u(τ) = β or α},

v(t)
�
=




v(0) if Xt = ∅
−1 if Xt �= ∅ and u(maxXt) = β

1 if Xt �= ∅ and u(maxXt) = α

.

−1

+1

β α u

v

Figure 2: The elementary Preisach hysteron.

4



This operator is sometimes referred to as an elementary Preisach hysteron (we will call it a hysteron

in this paper), since it is a building block for the Preisach operator.

The Preisach operator is a weighted superposition of all possible hysterons. Define

P0
�
= {(β, α) ∈ R

2 : β ≤ α}.

P0 is called the Preisach plane, and each (β, α) ∈ P0 is identified with the hysteron γ̂β,α. For u ∈
C([0, T ]) and a Borel measurable initial configuration ζ0 of all hysterons, ζ0 : P0 → {−1, 1}, the output

of the Preisach operator Γ is defined as [11]:

z(t) = Γ[u, ζ0](t) =
∫
P0

γ̂β,α[u, ζ0(β, α)](t)dν(β, α), (1)

where ν is a finite, signed Borel measure on P0, called the Preisach measure.

We call the Preisach measure ν nonsingular if |ν| is absolutely continuous with respect to the

two-dimensional Lebesgue measure. By the Radon-Nikodym theorem [17], if ν is nonsingular, there

exists a Borel measurable function µ, such that

Γ[u, ζ0](t) =
∫ ∫

P0

µ(β, α)γ̂β,α[u, ζ0(β, α)](t)dβdα. (2)

The weighting function µ is often referred to as the Preisach function [10] or the density function [12].

We consider exclusively the case µ ≥ 0 in this paper.

To simplify the discussion, throughout the paper we assume that µ has a compact support, i.e.,

µ(β, α) = 0 if β < β0 or α > α0 for some β0, α0, and without loss of generality, we let α0 = −β0 =: r0 >

0. Then it suffices to consider the finite triangular area P �
= {(β, α) ∈ R

2|α ≥ β, β ≥ −r0, α ≤ r0}.

At time t, P can be divided into two regions: P±(t)
�
= {(β, α) ∈ P| output of γ̂β,α at t is ± 1}. In

most cases of interest, each of P− and P+ is a connected set [10], and the output of Γ is determined by

the boundary between P− and P+ if the Preisach measure is nonsingular. The boundary is also called

the memory curve. The memory curve typically has a staircase structure and its intersection with the

line α = β gives the current input value. For a precise characterization of the set Ψ of memory curves

, we refer to [18]. The memory curve ψ0 at t = 0 is called the initial memory curve and it represents

the initial condition of the Preisach operator.

If the Preisach measure is nonsingular, we can identify a configuration of hysterons ζψ with a

memory curve ψ in the following way: ζψ(β, α) = 1 (−1, resp.) if (β, α) is below (above, resp.) the
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graph of ψ. Note that it does not matter whether ζψ takes 1 or −1 on the graph of ψ. In the sequel

we will put the initial memory curve ψ0 as the second argument of Γ, where Γ[·, ψ0]
�
= Γ[·, ζψ0 ].

A constrained least squares scheme was proposed to identify the Preisach measure ν in [7]. In

the scheme, the input is discretized into L+ 1 levels (called discretization of level L) for some L > 0

and that leads to a discretized Preisach operator (Figure 3), i.e., a weighted sum of finitely many

hysterons. What is identified in [7], is a collection of weighting masses sitting at centers of cells in the

discretization grid (see the dark dots in Figure 3). We can then obtain a nonsingular approximation

νp to the true Preisach measure ν by assuming that each identified mass is distributed uniformly over

the corresponding cell. Note that the density µp corresponding to νp is piecewise uniform.

α

βu1 u2 u3 u4

u1

u2

u3

u4

Figure 3: Discretization of the Preisach plane (L = 3).

3 The Model for Thin Magnetostrictive Actuators

Magnetostriction is the phenomenon of strong coupling between magnetic properties and mechanical

properties of some ferromagnetic materials (e.g., Terfenol-D). Figure 4 shows a sectional view of a thin

Terfenol-D actuator. By varying the current in the coil, we vary the magnetic field in the Terfenol-D

rod and thus control the displacement of the rod head. Figure 5 displays the hysteresis observed in

the magnetostrictive actuator.

When the frequency of the input current is low (typically below 5 Hz), the magnetostrictive

hysteresis is rate-independent – roughly speaking, the shape of the hysteresis loop is independent of
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Figure 4: Sectional view of a Terfenol-D actuator [19](Original source: Etrema Products, Inc.).
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Figure 5: Hysteresis in a magnetostrictive actuator.

the input frequency, and it can be modeled by essentially a Preisach operator 2 [7]:



H(t) = c0I(t)

M(t) = Γ[H(·), ψ0](t)

y(t) = cMM
2(t)

, (3)

where I is the input current, y is the displacement of the actuator head, M and H are the bulk

magnetization and the magnetic field (assumed uniform) along the rod direction, respectively, Γ is the

Preisach operator, and c0 and cM are positive constants.

When the input frequency gets high, the magnetostrictive hysteresis is rate-dependent. Venkatara-

man and Krishnaprasad proposed a bulk magnetostrictive hysteresis model for the thin rod actuator

based on energy balancing principles [20, 19]. The model has a cascaded structure as shown in Fig-

ure 6. Note the resemblance of Figure 6 with Figure 1(a). W̄ takes care of the M - H hysteresis and
2To ease discussion, we have absorbed the (constant) bias field Hbias [13] into I(t).
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the eddy current losses, and the magnetoelastic dynamics of the rod is lumped into a second order

linear system G(s). G(s) has a state space representation [20, 19](after some manipulations):

ÿ(t) + 2ξω0ẏ(t) + ω2
0y(t) = ω2

0cMM
2(t), (4)

where ω0 and ξ are positive constants.

I M M2 y
W (  )2 G(s)
_

Figure 6: Model structure of a magnetostrictive actuator.

By replacing the switching ODE model in [20, 19] with a Preisach operator Γ for the M - H

hysteresis, we have proposed a new dynamic model [13, 18] for the W̄ block:



Ḣ(t) + Ṁ(t) = c1(I(t) − H(t)
c0

)

M(t) = Γ[H(·), ψ0](t)
, (5)

where c1 is a positive constant. We note that the Preisach operator is coupled to an ODE in an

unusual way in (5).

We also note that setting derivatives in (4) and (5) to zero, the dynamic model degenerates to the

rate-independent hysteresis model (3). More details on magnetostrictive actuators and the modeling

can be found in [13].

4 Quantification of the Inversion Error

Recall Figure 1(b). In general W̃−1 is not an exact (right) inverse of W , and two factors may contribute

to the inversion error eu: parameter uncertainties in W and non-existence of exact inverse schemes.

There are two possible ways to model eu. One is to model it as the output of some uncertainty

block ∆ (Figure 7(a)), and the other is to simply model it as an exogenous disturbance v (Figure 7(b)).

For the Preisach operator-based models, eu is independent of u and it is possible that eu �= 0 for u = 0.

Therefore there exists no stable ∆ such that eu = ∆u, and we will treat eu = v as an external noise.

We need specify the signal spaces for quantification of the inversion error. The inversion error for

the Preisach operator is bounded in magnitude instead of in energy. Hence a natural choice for the
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Figure 7: Two ways to represent the inversion error.

M
~
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eM

M
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Figure 8: The error in inversion of the Preisach operator.

signal spaces is l∞ and not l2. Also it is more appropriate to use l∞ for the desired trajectory and the

tracking error. Another advantage of using l∞ for signals is that the actuator saturation constraint can

be easily handled in the corresponding l1 robust control theory, while it’s very hard to be formulated

in H∞ control theory.

We now quantify the error bounds in inversion of the Preisach operator and the dynamic model

(5). Here we are concerned with eM [·] = M̃ [·] −M [·], where M̃ [·] and M [·] denote the trajectories of

achieved output and desired output of the Preisach operator, respectively. The bound on eu when the

square nonlinearity in Figure 6 is included can be easily derived from the bound on eM .

We will not review the inversion algorithms here, since they have been given in [13]. Interested

readers are referred to [13] or [18] for details.

4.1 Error in inversion of the Preisach operator with a nonsingular measure

Consider Figure 8, where Γ is a Preisach operator with nonsingular Preisach measure ν.

Given a sequence {M [k]} ∈ l∞ and the initial memory curve ψ0 ∈ Ψ (the set of memory curves),

the inversion problem for the Preisach operator is to find the input sequence {H[k]} ∈ l∞, such that
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the output sequence {M̃ [k]} matches {M [k]}, i.e.,

M [k] = Γ[H[·], ψ0][k].

Remark 4.1 Note that we now have a sequence instead of a continuous time function as the first

argument of Γ. To avoid confusion, we tacitly understand that the input is monotonically changed

from H[k] to H[k + 1]. Throughout the paper we may use a sequence or a continuous time function

as the first argument of Γ depending on the context.

As discussed in [13], for a Preisach operator with a nonnegative, nonsingular Preisach measure, the

inversion problem can be solved with arbitrary accuracy if the Preisach measure is known exactly. In

this case, it suffices to consider the inversion problem of length 1: given ψ0 ∈ Ψ and M̄ ∈ [−Ms,Ms],

where Ms is the saturation output of the Preisach operator, find H̄ such that

M̄ = Γ[H̄, ψ0]. (6)

4.1.1 Error due to the inversion scheme

If the Preisach measure ν is known exactly but otherwise has a general distribution, an iterative algo-

rithm is available to solve (6) with arbitrary accuracy [13]. Let the stopping criterion be |M (n)−M̄ | ≤ ε,

where M (n) denotes the output value of Γ achieved at the n-th iteration. Then it’s straightforward

that

‖ eM ‖∞≤ ε for any M [·] ∈ l∞.

4.1.2 Error due to the parameter uncertainty

If the Preisach measure ν is unknown, we can obtain a nonsingular approximation νp with a piecewise

uniform density µp as discussed in Section 2. The Preisach operator with measure νp can be inverted

exactly (in a finite number of steps) [13]. Hence the inversion error eM is now solely due to the

measure uncertainty |ν − νp|. It turns out that we can quantify the error bound in terms of the

relative identification error and the discretization level L of the Preisach plane:

Proposition 4.1 Let the true Preisach measure ν be nonnegative and nonsingular with density µ.

Let µ be bounded by some constant µ̄ > 0. Given a discretization of level L, denote the integral of µ

10



over a cell i as ν0
i , 1 ≤ i ≤ Nc, where Nc is the total number of cells. Denote by νi the identified mass

for cell i. Assume the relative error in identification is δI , i.e., |νi−ν0
i |

ν0
i

≤ δI , 1 ≤ i ≤ Nc. Then

‖ eM ‖∞≤ δIMs +
8µ̄r20
L

,

where Ms is the saturation output of the Preisach operator with measure ν, and r0 is as defined in

Section 2.

Proof. Define µp as discussed earlier. We obtain another Preisach measure with a piecewise constant

density µ0
p by distributing ν0

i uniformly over the cell i, 1 ≤ i ≤ Nc. To distinguish the Preisach

operators, we will put the corresponding density as the subscript of Γ, e.g., Γµ denotes the Preisach

operator with Preisach density µ.

Given M [·] ∈ l∞ and ψ0, we denote the output of Γ̃−1 in Figure 8 as H, where Γ̃−1 is the inverse

of Γµp . Then, ∀k ≥ 0,

|eM [k]| = |Γµ[H,ψ0][k] − Γµp [H,ψ0][k]|
≤ |Γµ[H,ψ0][k] − Γµ0

p
[H,ψ0][k]| + |Γµ0

p
[H,ψ0][k] − Γµp [H,ψ0][k]|. (7)

All three Preisach operators involved in (7) share the same memory curve ψ[k], ∀k ≥ 0. It’s obvious

that the second term of (7) is bounded by δIMs. To bound the first term, we note that for any k ≥ 0,

the memory curve ψ[k] spans L−1 square cells and one triangular cell (Figure 9). Any cell not touched

by ψ[k] will contribute the same amount to Γµ[H,ψ0][k] and Γµ0
p
[H,ψ0][k]. Hence the first term of (7)

is bounded by twice the interal of µ over cells spanned by ψ[k], which is further bounded by

2µ̄(2r0)2(L− 1
2)

L2
<

8µ̄r20
L

.

This completes the proof. �

Remark 4.2 From Proposition 4.1, the bound on the inversion error consists of two parts: the first

part is proportional to the relative identification error, and the second part is inversely proportional to

the level L of discretization.

Remark 4.3 The assumption that ψ0 is known is not very restrictive since in many cases we have

the choice to initialize the system. On the other hand, if ψ0 is not known exactly, we can easily include

a term in ‖ eM ‖∞ which takes care of the uncertainty in ψ0.
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Figure 9: Illustration of the proof of Proposition 4.1 (L = 8).

4.2 Error in inversion of the dynamic hysteresis model

Given the initial memory curve ψ0 and a trajectory of M(·), inversion of (5) is to find I(·), so that

the output of the block W̄ in Figure 6 is M(·). The following (formal) inversion scheme was proposed

in [13]:

I(t) =
1
c1

(Ḣ(t) + Ṁ (t)) +
H(t)
c0

, (8)

where H(t) = Γ−1[M(·), ψ0](t). But if there is uncertainty in the model parameters, it is very hard to

derive a bound for the inversion error. We now present another inversion algorithm. This algorithm

leads to an inversion error even if the exact parameters are known, but it will allow us to quantify the

inversion error when model uncertainties are present.

Eq. (5) can be rewritten as:



Ḣ(t) = c1
1+g(t)(I(t) − H(t)

c0
)

M(t) = Γ[H(·), ψ0](t)
, (9)

where g(t) carries the interpretation of “dMdH ” at time t, and it depends on both the state ψt (the memory

curve at t) and the sign of Ḣ [18]. When the Preisach measure is nonnegative and nonsingular with a

piecewise continuous density, we have 0 ≤ g(t) ≤ Cg, for some constant Cg > 0 [18]. We can view (9)

as perturbed from the following decoupled system:



Ḣ(t) = c1
1+ḡ (I(t) − H(t)

c0
)

M(t) = Γ[H(·), ψ0](t)
, (10)

where ḡ ∈ [0, Cg] is some constant (at our disposal). Based on (10), an approximate inversion scheme

for (9) is given formally by 


H(t) = Γ−1[M(·), ψ0](t)

I(t) = 1+ḡ
c1
Ḣ(t) + H(t)

c0

. (11)
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We have two ways to implement the second equation in (11) in the discrete time, which correspond

to the explicit Euler scheme and the implicit Euler scheme in discretizing the first equation in (10),

respectively: for k ≥ 0,

I[k] =
1 + ḡ

c1h
(H[k] −H[k − 1]) +

H[k − 1]
c0

, (12)

I[k] =
1 + ḡ

c1h
(H[k] −H[k − 1]) +

H[k]
c0

, (13)

where h is the time step size, H[−1] = H[0].

Remark 4.4 Direct discretization of the first equation in (10) by the explicit Euler scheme (a similar

remark applies to the implicit Euler scheme) gives:

I[k] =
1 + ḡ

c1h
(H[k + 1] −H[k]) +

H[k]
c0

,

but this is not a causal system and thus not realizable. An intrinsic delay is introduced in the inversion

due to the dynamics in the rate-dependent hysteresis model.

We now want to study the errors caused exclusively by the inversion algorithms, i.e., we assume

that we have exact values of parameters. For the algorithm (12), the discrete-time version of the first

equation in (9) is obtained by the explicit Euler scheme:

H̃[k + 1] − H̃[k]
h

=
c1

1 + g[k]
(I[k] − H̃[k]

c0
), (14)

where g[k]
�
= g(kh). Similarly, if the inversion algorithm (13) is used, we will use the corresponding

discrete-time model obtained by the implicit Euler scheme. Figure 10(a) shows the problem setup for

the explicit Euler case.

For the purpose of deriving the bound on the inversion error, we will not need the exact values of

g[k]. Due to the delay caused by the inversion, the error eM is now defined as (Figure 10(d)):

eM [k]
�
= M̃ [k] −M [k − 1].

Proposition 4.2 Let the Preisach measure be nonnegative and nonsingular with a piecewise con-

tinuous density µ. Let the Preisach operator Γ be Lipschitz continuous with Lipschitz constant Lµ.

Consider the inversion algorithm obtained from the explicit Euler method (Figure 10(a)). Let H[−1] =

H[0] = H̃[0]. Pick ḡ ∈ [0, Cg]. Then for any M [·] ∈ l∞, for any ψ0 ∈ Ψ,

‖ eM ‖∞≤ 2Lµγ̄er0, (15)
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Figure 10: The error in inversion of the rate-dependent hysteresis model.

where

γ̄e =
max{ḡ, Cg−ḡ

1+Cg
}

1 − max{hc1c0 − 1, 1 − hc1
c0(1+Cg)}

.

The optimal ḡ to minimize γ̄e is Cg

Cg+2 .

Proof. We first derive a bound for eH , defined by eH [k] = H̃[k] −H[k − 1], k ≥ 0. Substituting (12)

into (14), we have

eH [k + 1] = a[k]eH [k] + b[k](H[k] −H[k − 1]), (16)

where

a[k]
�
= 1 − hc1

c0(1 + g[k])
, b[k]

�
=
ḡ − g[k]
1 + g[k]

.

From (16), we compute

eH [k + 1] = (
k∏
i=0

a[i])eH [0] +
k∑
i=0

(
k∏

j=i+1

a[j])b[i](H[i] −H[i− 1]). (17)
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Since eH [0] = 0,

|eH [k + 1]| ≤ 2(
k∑
i=0

āi)b̄ ‖ H ‖∞

≤ 2b̄
1 − ā

‖ H ‖∞, (18)

where

ā
�
= max

x∈[0,Cg]
|1 − hc1

c0(1 + x)
|, b̄

�
= max

x∈[0,Cg]
| ḡ − x

1 + x
|.

It’s easy to verify that

ā = max{hc1
c0

− 1, 1 − hc1
c0(1 + Cg)

}, b̄ = max{ḡ, Cg − ḡ

1 + Cg
}.

Therefore ‖ eH ‖∞≤ 2γ̄e ‖ H ‖∞. The error eH can be thought of as the output of some uncertainty

block ∆H with the induced gain less than or equal to 2γ̄e (Figure 10(b)). But since Γ,Γ−1 sit outside

the dashed box in Figure 10(b), we can not carry ∆H along further. Instead we represent eH as an

exogenous disturbance with magnitude bounded by 2γ̄er0 (Figure 10(c)). Eq. (15) now follows using

the Lipschitz continuity and the time invariance properties of Γ. It’s easy to see that the optimal ḡ

minimizing the error bound is Cg

Cg+2 . �

Similarly we can derive the error bound for the implicit Euler algorithm (13):

Proposition 4.3 Let the assumptions in Proposition 4.2 hold. Consider the implicit Euler algorithm

(13). Then for any M [·] ∈ l∞, for any ψ0 ∈ Ψ,

‖ eM ‖∞≤ 2Lµγ̄ir0, (19)

where

γ̄i = max{ ḡ

1 + c1h
c0

,
Cg − ḡ

1 + Cg + c1h
c0

}c0(1 + Cg) + c1h

c1h
.

The optimal ḡ to minimize γ̄i is (c0+c1h)Cg

2(c0+c1h)+c0Cg
.

Remark 4.5 For the explicit algorithm, the step size h has to be chosen small enough to ensure

stability of (14) and (16). The implicit algorithm, however, is stable ∀h > 0. Therefore the implicit

algorithm is preferred in general.

Remark 4.6 Propositions 4.2 and 4.3 use the Lipschitz continuity of the Preisach operator. We

recall from [11] that if the Preisach measure is nonsingular, the Preisach operator will be continuous.
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Furthermore, if the measure ν satisfies the condition

ν(N(ψ, ε)) ≤ εLµ, ∀ψ ∈ Ψ, (20)

for some Lµ > 0, where N(ψ, ε) denotes the ε-neighbourhood of ψ, then the Preisach operator is Lip-

schitz continuous with the Lipschitz constant 2Lµ. The condition (20) is usually satisfied in practice.

Propositions 4.2 and 4.3 quantify the errors solely due to inversion algorithms. It’s straightforward to

extend the error estimates to the case that there are parametric uncertainties in c0 and c1. The error

due to inversion of the Preisach operator and to the uncertainty in the Preisach measure can also be

included as done in Subsection 4.1.

When the square operator is present, like in the case of a magnetostrictive actuator, the estimate

of eu can be derived from that of eM . Let u ∈ [umin, umax] (recall Figure 1(b)), with umin ≥ 0. One

can easily verify that

‖ eu ‖∞≤‖ eM ‖2
∞ +2 ‖ eM ‖∞ √

umax.

5 Formulation of the Robust Control Problem

In this paper, we consider Ĝ0(λ) to be the identity operator, i.e., we are interested in trajectory tracking

of the actuator head itself. Figure 11 shows the closed-loop system after the inverse compensation is

done, where the exogenous noise v represents the inversion error. From the previous section, ‖ v ‖∞≤ v̄,

and v̄ is quantifiable in terms of inverse schemes and parametric uncertainties. Ĝa(λ) stands for the

discretized version of G(s) in Figure 6. The composition ∆ ◦ Ŵ0(λ) represents the deviation of the

actual plant from the nominal plant Ĝa(λ). We assume that ∆ can be any nonlinear operator with

‖ ∆ ‖l∞−ind< 1, where ‖ · ‖l∞−ind denotes the induced operator norm when the signal space is l∞.

Ŵ0(λ) is a weighting function and it reflects that the model uncertainty is larger at a higher frequency.

Let ‖ yref ‖∞≤ r̄, where yref is the reference trajectory. The error ey
�
= yref − y is fed into the

controller K̂(λ). The delay λ following K̂(λ) is due to inversion of the dynamic hysteresis model.

Let the saturation limits of the actuator be −ū and ū respectively. Then the saturation constraint

translates into ‖ u0 ‖∞≤ 1, where u0 is as defined in Figure 11. The case umin �= −umax will be

discussed in Section 6.
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There are two delays in the loop since Ĝa(λ) contains a pure delay. This motivates us to define

the tracking error e0 as

e0[k] =
yref [k − 2] − y[k]

γ
, (21)

where γ > 0 is the desired disturbance attenuation level. To ease the formulation, we normalize signals

v and yref , and regard v0 and r0 as inputs to the system with ‖ v0 ‖∞≤ 1, ‖ r0 ‖∞≤ 1 (Figure 11).

The transfer function Ĝ(λ) from (v1, v0, r0, u)T to (n1, e0, u0, ey)T is



n1

e0

u0

ey




=




0 v̄Ŵ0(λ) 0 λŴ0(λ)

− 1
γ − v̄

γ Ĝa(λ) r̄λ2

γ −λ
γ Ĝa(λ)

0 0 0 1
ū

−1 −v̄Ĝa(λ) r̄ −λĜa(λ)




︸ ︷︷ ︸
Ĝ(λ)




v1

v0

r0

u



. (22)

In terms of Ĝ, the closed-loop system in Figure 11 can be simplified as in Figure 12 (a).

The control objective is: find the smallest γ and a stabilizing controller K̂(λ), such that
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1. the closed-loop system is stable for any ∆ with ‖ ∆ ‖l∞−ind< 1,

2. ‖ e0 ‖∞≤ 1 if ∆ = 0, ∀v0, r0 with ‖ v0 ‖∞≤ 1 and ‖ r0 ‖∞≤ 1, and

3. ‖ u0 ‖∞≤ 1 if ∆ = 0, ∀v0, r0 with ‖ v0 ‖∞≤ 1 and ‖ r0 ‖∞≤ 1.

If we define the exogenous input w and the regulated output z as

w
�
=


 v0

r0


 , z

�
=


 e0

u0


 ,

then items 2 and 3 above are equivalent to ‖ Φzw ‖1≤ 1,, where Φzw denotes the transfer function

from w to z, and ‖ · ‖1 denotes the l1 norm of a LTI system [2]. By the small gain theorem, (5) is

equivalent to requiring robust stability of the system when we wrap a nonlinear uncertainty block ∆P

from z to w with ‖ ∆P ‖l∞−ind< 1, as shown in Figure 12 (b).

Now the control problem can be reformulated as: find the smallest γ and a stabilizing controller

K̂(λ), such that the closed-loop system in Figure 12 (b) is robustly stable for all ∆̃ ∈ ∆̃, where

∆̃
�
= {∆̃ = diag(∆,∆P ) : ∆ is nonlinear and of dimension 1 × 1, ∆P is nonlinear and of dimension

2 × 2, ‖ ∆̃ ‖l∞−ind< 1}.

To solve the robust control problem, we need determine, for a fixed γ > 0, whether we can find

a stabilizing K̂(λ), such that the closed-loop system is stable for all ∆̃ ∈ ∆̃. This will be called the

robust control problem with disturbance attenuation level γ, and it is solvable if and only if

inf
stabilizing K̂

inf
D∈D

‖ D−1Fl(Ĝ, K̂)D ‖1≤ 1, (23)

where D
�
= {D = diag(d1, d2, d2) : d1, d2 > 0}, and Fl(·, ·) denotes the lower Linear Fractional

Transformation [2]. We now give a sketch of how to solve (23). Interested readers are referred to [2]

for details of the approach.

We restrict ourselves to finite dimensional LTI (FDLTI) controllers. Simultaneous optimization

with respect to D and K̂ is hard, and a practical approach is to use the D−K iteration method and

decompose the problem (23) into a sequence of decoupled optimization problems.

In Step 1 of each D −K iteration, for a fixed D ∈ D, we want to solve

inf
stabilizing K̂

‖ D−1Fl(Ĝ, K̂)D ‖1 . (24)
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Partition Ĝ into a 2 × 2 block matrix as shown in (22) and denote it as

Ĝ =


 Ĝ11 Ĝ12

Ĝ21 Ĝ22


 .

Since Ĝ22 for our problem is stable, the set of stabilizing FDLTI controllers K̂ is parametrized by:

K̂(λ) = − Q

1 − Ĝ22Q
, Q ∈ RH1×1

∞ , (25)

and the scaled achievable closed-loop maps is parametrized by

D−1Fl(Ĝ, K̂)D = E − UQV, Q ∈ RH1×1
∞ , (26)

where E
�
= D−1Ĝ11D, U

�
= D−1Ĝ12, V

�
= Ĝ21D, and RH1×1

∞ denotes the space of real rational

(complex) functions that are analytic on the open unit disc and bounded on the unit circle. Therefore

(23) is transformed into

inf
Q∈RH1×1∞

‖ E − UQV ‖1 . (27)

Problem (27) is a multi-block l1 model matching problem and we can approximate it by a one-block l1

model matching problem through delay augmentation (DA). The latter problem is then solved using

linear programming. We also obtain a sub-optimal controller for (26) from the DA method.

Remark 5.1 For the system we consider, the only zeros that the delay augmented matrices UN and

VN (c.f. [2]) have inside the unit disk are 0’s. This has two pleasant consequences:

1. In computation of null chains and evaluation of the zero interpolation conditions, relevant coef-

ficients can be obtained directly from the impulse responses and we thus avoid expensive symbolic

calculation of high order derivatives.

2. From the zero interpolation conditions, the upper bound on the (finite) length of the closed-loop

impulse response can be derived explicitly.

In Step 2 of each D −K iteration, an analytical expresssion for the optimal D∗ exists since there

are only two blocks in the structured uncertainty class ∆̃.
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Figure 13: Effect of the model uncertainty on γ∗.

6 Simulation and Experimental Results

6.1 Effects of design parameters on the optimal disturbance attenuation level

We first present some computation results on how the optimal attenuation level γ∗ is affected by

the following factors: the magnitude of uncertainty, the magnitude v̄ of the inversion error, and the

saturation limit ū.

The sampling frequency we use is 2000 Hz. The corresponding Ĝa(λ) is

Ĝa(λ) =
2.23 × 10−11λ2 + 4.28 × 10−11λ

0.147λ2 − 0.549λ + 1
.

We choose the continuous time weighting function to be W0(s) = cw(s+1)
s+300 , where cw > 0 determines

the magnitude of the uncertainty in the plant. Discretizing W0(s) gives

Ŵ0(λ) =
1.1759cw(λ− 1.0005)

λ− 1.1765
.

We let r̄ = 30.

Figure 13 shows the effect of the uncertainty magnitude on γ∗. Other parameters used are v̄ =

0.1M2
s , ū = 7.5M2

s , where Ms is the saturation magnetization. Since the range of u in the case of

a magnetostrictive actuator is [0,M2
s ] (recall Figure 6), expressing v̄ and ū in terms of M2

s allows

one to make more concrete sense out of these numbers. From Figure 13, we see that the higher the

uncertainty, the bigger γ∗.
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Figure 14 displays how γ∗ varies with the magnitude v̄ of the inversion error, where we have fixed

cw = 6.53 × 10−13 and ū = 1.25M2
s . As one expects, the optimal attenuation level γ∗ increases as v̄

increases.

Figure 15 shows how γ∗ is affected by the saturation constraint. We have used cw = 6.53 × 10−13

and v̄ = 0.1M2
s . γ∗ drops when ū increases, but γ∗ becomes a constant when ū hits 4.5M2

s , beyond

which the saturation constraint no longer plays a role.
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6.2 Results of trajectory tracking

The saturation constraint considered so far is of the form |u| ≤ ū. But for real actuators, the saturation

limits may be asymmetric, i.e., umin �= −umax. For example, for magnetostrictive actuators, u ∈
[0,M2

s ]. To handle the general constraint u ∈ [umin, umax], we let ū = umax−umin
2 and ub = umax+umin

2 .

The quantity ū is the saturation limit to be used in the controller design, while ub is a bias input to

be injected into the system. Then the actual control will be u = uc + ub with |uc| ≤ ū.

Since the gain of Ŵ0 is close to 0 for a dc signal, we can ignore the contribution of ub to the actuator

output y through the ∆ ◦ Ŵ0 branch. Its contribution through the Ĝa branch can be calculated as

yb =
λĜa(λ)

1 + λK̂(λ)Ĝa(λ)
ub.

The previous robust control framework applies if we add yb to the reference trajectory yref (or alter-

natively, taking yb off from y).

As we have seen from Figure 15, the tracking performance deteriorates as the saturation constraint

ū is tightened. For the magnetostrictive actuator, ū = 0.5M2
s and strictly enforcing this constraint

will lead to large tracking errors. This reveals the limitation of pure linear design for an intrinsically

nonlinear plant. Hence a practical approach would be to properly relax the constraint.

Figures 16(a) and 17(a) show the simulation results of tracking a sinusoidal signal and an irregular

signal, respectively. The current I applied is also displayed. The controller K̂(λ) is designed based

on r̄ = 30, cw = 3.3 × 10−13, v̄ = 0.1M2
s , and ū = 3.25M2

s . Figure 18 shows the output of K̂(λ) in

tracking the sinusoidal signal, and we see that although we set ū = 3.25M2
s in the controller design,

the control stays in the (true) unsaturated region [−0.5M2
s , 0.5M2

s ] except during the transient period

at the beginning.

Our composite controller (the linear robust controller plus the inverse algorithm) is compuation

efficient and we can implement it in real-time. Figures 16(b) and 17(b) show the experimental results

of trajectory tracking based on the same controller used in the simulation. It matches well with the

simulation result and the overall performance is satisfactory.

The saturation limit ū can not be “over-relaxed”. For example, we design another controller based

on r̄ = 25, cw = 3.3 × 10−13, v̄ = 0.05M2
s , and ū = 5M2

s . The simulation result (Figures 19(a))

based on this new controller is better than that in Figure 16(a). But when we put the controller into
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Figure 16: Results of tracking a sinusoidal signal. (a) Simulation result; (b) Experimental result.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

10

20

30

40

50

60

70

Time (sec.)

D
is

pl
ac

em
en

t (µ
 m

)

Desired trajectory
Measured trajectory

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−1

−0.5

0

0.5

1

1.5

Time (sec.)

In
pu

t (
A

)

(a)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

10

20

30

40

50

60

70

Time (sec.)

D
is

pl
ac

em
en

t (µ
 m

)

Desired trajectory
Measured trajectory

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−1

−0.5

0

0.5

1

1.5

Time (sec.)

In
pu

t (
A

)

(b)

Figure 17: Results of tracking an irregular signal. (a) Simulation result; (b) Experimental result.
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the experiment, the tracking performance suffers from the persistant saturation (Figure 19(b)). This

justifies the necessity of including the saturation constraint in the problem formulation.
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Figure 19: Results based on an “over-relaxed” controller. (a) Simulation result of trajectory tracking;

(b) Experimental result of trajectory tracking.

7 Conclusions

In this paper, we presented a robust control framework for smart actuators by combining the inverse

compensation with the linear robust control theory, where the essential ideas were illustrated through

the example of robust tracking of a magnetostrictive actuator.

24



We first showed that, the inversion error for a Preisach operator-based hysteresis model, either

rate-independent or rate-dependent, can be bounded in magnitude. Furthermore, the bound can be

characterized in terms of parameter uncertainties and the specific inversion scheme used. This allows

us to model the inversion error as an exogenous noise and attenuate its impact by robust control

techniques.

We then aimed to achieve three competing goals in the robust control problem formulation: ro-

bust stability, robust tracking, and not exceeding the saturation constraint. We also discussed how

to balance these goals and seek the sensible trade-off. Simulation and experimental results have

demonstrated the effectiveness of the robust control scheme.
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